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1 Introduction

1.1 Context

In the context of the Natural Computation and Self Organization class, ε-machines were
widely discussed as classical objects used to simulate and study stochastic processes. Re-
cently, a quantum analog of this object has been introduced [1]. The q-machine consists of
a set {|ηk(L)〉} of quantum states that are in one to one correspondence with the classical
causal states σk ∈ S. This quantum states are constructed as follows:

|ηj(L)〉 =
∑

wL∈|A|L

∑
σk∈S

√
Pr(wL, σk|σj)|wL〉|σk〉

here, wL denotes a length L word and Pr(wL, σk|σj) is the probability of observing
word wL and landing in state σk given that the system is in state σj . The Hilbert space
of which this pure quantum states are elements is the product Hw ⊗Hσ. The first space
corresponds to the space of words of length L, it is of size |A|L where |A| is the alphabet
size, it’s basis elements are |wL〉. The second space corresponds to the space of classical
causal states, it’s size is |S| and has basis elements |σk〉.

As can be seen from this definition of the states, the q-machine captures the statistics
of the process: if a measurement is performed in the Hw space, a specific word wL is
measured with probability Pr(wL, σk|σj) and due to unifilarity the system is in state |σk〉,
which corresponds to a classical causal state σk.

The initial state of the q-machine is defined then by:

ρ(L) =
∑
i

πi|ηi(L)〉〈ηi(L)|
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with π is the stationary distribution of the classical causal states.
In this context, reference [1] introduces the quantum analog of the statistical complexity,

Cq, which is defined as the Von Neumann entropy of ρ (S(ρ) = Tr(ρ log(ρ))). Viewing
the statistical complexity as the communication cost of synchronizing to a process, the
q-machine is advantageous because there is strong evidence for claiming that Cq ≤ Cµ.

1.2 Motivation

The fact that the q-machine reduces the cost of synchronization for a process is a point
in favor of the quantum representation, and it also incites looking for further advantages
that this representation can contribute to the modelling of a stochastic process.

A natural quantity to start looking into is entanglement. This is a physical resource
exclusive to quantum mechanical systems, and is responsible to many of the advantages of
quantum information and quantum computation over its classical counterpart [5]. Despite
the fact that entanglement has been studied for several decades now, a lot of aspects of it
remain to be understood. The measurement of entanglement of a pure state of a bipartite
system is well understood and standarized, but this is not the case for mixed states. In the
case of mixed states there are several different measurements and they’re used in different
contexts. One of this measurements, which will be defined below is the entanglement of
formation (EoF) of a mixed state of bipartite quantum states. This measurement was
calculated for a simple example process (the Biased Coins) and the results are shown in
Figure 1.

Figure 1: For the two biased coins process, the entanglement of formation is the same as
the crypticity (Cµ − E)
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As can be seen from the graph, for this process we get EoF = Cµ − E which is a very
surprising result because it suggests a relationship between a purely quantum quantity
with classical quantities. The objective of this project was to explore this result further
and try to understand what this relationship means. Even though this still remains to be
answered, an advance towards understanding is presented as well as a set of more specific
questions that might lead to a more clear picture of what the EoF of a q-machine says
about the stochastic process.

2 Background

Since the Hilbert space that describes the q-machine states is defined as a bipartite space,
we will only discuss entanglement in such quantum systems. As was previously mentioned
there are several ways of measuring entanglement for mixed states, one of the most used
measurements used in quantum information theory is entanglement of formation [5], which
will be defined here. This measurement can be calculated analytically for mixed states of
systems [2], but is yet to be defined for higher dimensional systems.

2.1 Entanglement of a pure state of two qubits

A pure quantum state of two qubits composed of spaces A and B, can be represented in
the following way:

|Ψ〉 = α|00〉+ β|01〉+ δ|10〉+ γ|11〉

where |α|2 + |β|2 + |δ|2 + |γ|2 = 1 and the first qubit is from space A and the second
one from space B. Such state is said to be entangled if it cannot be written as the product
state of two qubits (i.e. quantum states of the form |Φ〉 = a|0〉+ b|1〉 with |a|2 + |b|2 = 1)
one from space A and the other from space B. The entanglement of state |Ψ〉 can then be
measured as follows:

E(Ψ) = S(TrB|Ψ〉〈Ψ|) = S(TrA|Ψ〉〈Ψ|)

That is, one takes the partial trace of the density matrix |Ψ〉〈Ψ| (i.e. trace over the
first or second qubit only). If the state is “separable” the resulting density matrix will be
that of a pure state and its von Neumann entropy will be zero. Otherwise, it will have
off-diagonal elements different than zero, so that the Von Neumann entropy of said matrix
will be different than 0. This is the standard way of measuring entanglement for a pure
system.

For example, take the separable state: |α〉 = 1√
2
(|00〉 + |01〉), we can calculate it’s

partial trace:

TrB|α〉〈α| = |0〉〈0|
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Now, the entanglement of α would be

E(α) = S(|0〉〈0|) = 0

For a non-separable state, like |B1〉 = 1√
2
(|00〉+ |11〉) we have:

|B1〉〈B1| =
1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |00〉〈00|)

So that

TrB(|B1〉〈B1|) =
1

2
(|0〉〈0|+ |1〉〈1|)

and we get

E(B1) = 1

This state is said to be maximally entangled and is one of the four Bell states:

|B1〉 =
1√
2

(|00〉+ |11〉)

|B2〉 =
1√
2

(|00〉 − |11〉)

|B3〉 =
1√
2

(|01〉+ |10〉)

|B4〉 =
1√
2

(|01〉 − |10〉)

which are all in a sense “special” because they are maximally entangled and form an
orthonormal set.

2.2 Entanglement of Formation

One way to interpret the entanglement of a pure state of two qubits, such as the ones men-
tioned above, is the entanglement of formation [2]. To do this, we take a particular entan-
gled state as a standard unit of measure, for example the singlet state |B4〉 = 1√

2
(|01〉−|10〉).

Now, suppose that Alice and Bob (each holding one of the qubits) have a protocol that,
given m shared of this |B4〉 states, can create n “high fidelity” copies of |Ψ〉. This protocol
can only involve local operations (each of them can only operate on their respective qubit)
and they share a classical communication channel (this is called an “LOCC” protocol).
The minimum value of the ration m/n that can be achieved in the limit of large n is the
Entanglement of Formation, which turns out to be equal E(Ψ) [4]. Schematically:

nE(Ψ)× |B4〉 → n× |Ψ〉
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So, for example if the value of E(Ψ) is 1/2 one would need 500 singlet pairs to create 1000
copies of Φ. It is then reasonable to say that state Ψ has half of the entanglement of a
singlet pair.

This idea can be extended to mixed states: Alice and Bob are now trying to create n
copies of mixed state ρ. A naive approach to calculating the EoF for a mixed state is first
writing ρ as:

ρ =
∑
j

pj |Φj〉〈Φj |

where |Φj〉 are distinct pure states of the bipartite systems and pj are non-negative real
numbers that add up to one. Now, one would expect [2] the EoF to be:

Eaverage(ρ) =
∑
j

pjE(Φj)

But there is a problem with this definition, because it depends on the particular de-
composition of ρ that was chosen. For example, if we have

ρ =
1

2
(|00〉〈00|+ |11〉〈11|)

it can be built as an qual mixture of states |00〉 and |11〉 which would give an entangle-
ment of 0, since this are pure states and no singlets are required to build ρ. But ρ can also
be built as an equal mixture of ( 1√

2
(|00〉+ |11〉)) and ( 1√

2
(|00〉−|11〉)) which would yield an

entanglement of 1. To solve this, one must concentrate on the idea that E is the minimum
number of singlets required to create ρ, so one should consider the decomposition of ρ that
minimizes Eaverage. The EoF of a mixed state ρ is then defined as:

E(ρ) = inf
∑
j

pjE(Φj)

Calculating that infimum is non-trivial in the general case, but there is a closed form
for it for the case of a mixed state of two qubits [2]. In order to introduce said formula we
must first introduce the notion of Concurrence.

2.3 Concurrence

Consider a pure state of two qubits |Φ〉. The concurrence C(Φ) is defined as

C(Φ) = |〈Φ|(σy ⊗ σy)|Φ∗〉|

where |Φ∗〉 is the complex conjugate of |Φ〉 and σy is the Pauli y matrix, which operating
on a qubit sends it to the orthogonal state (diametrically opposite on the Bloch sphere).
That is:
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σy|0〉 = i|1〉

σy|1〉 = −i|1〉

The concurrence of a pure state of two qubits would then be zero if the state is separable.
For any maximally entangled state on the other hand, the concurrence would be 1. So in it’s
own right the concurrence is a measurement of entanglement, but unlike the entanglement
of formation it is not a resource-based or information-theoretic measure [2]. It has been
proved that:

E(Φ) = E(C(Φ))

where:

E(C) = h

(
1 +
√

1− C2

2

)
and

h(x) = −x log2 x− (1− x) log2 (1− x)

2.4 EoF for a mixed state of two qubits

Now, for a mixed state ρ the concurrence is then defined as:

C(ρ) = inf
∑
j

pjC(Φj)

For two qubits, this can be calculated analitically [3] as:

C(ρ) = max 0, λ1 − λ2 − λ3 − λ4
here, the λis are the square roots of the eigenvalues of ρρ̃ in descending order. With:

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy)

The entanglement of formation of mixed state ρ can then be proved to be:

E(ρ) = E(C(ρ))

This quantity has the same interpretation for mixed states as it does for pure states.
It’s the minimum number of mixed states of singlets needed to generate a state ρ.
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3 Example Processes

Using the closed form of EoF for quantum mixed states of two qubits we can look at q-
machines of two state processes. As was mentioned in the introduction, the first example
studied yielded the interesting result that the EoF has the same form as a classical infor-
mation quantity of the process. A more detailed description of this particular example and
two other examples are studied in this section

3.1 Biased Coins Process

Figure 2: ε-machine for the Biased Coins process [1]

The epsilon machine of this process is shown in Figure 2. As can be seen this process
has several symmetries. It is also Markov Order R = 1 and cryptic order k = 1, so it’s a
very “well behaved” process. From Figure 1 it can be seen that EoF = Cµ−E. In Figure
3 we included the entropy rate of the process, which for this case is also equal to the EoF
calculated for the process.

Figure 3: Information quantities for the Biased Coins Process. The graph shows that, in
this case EoF is also equal to hµ
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3.2 Even Process

Figure 4: ε-machine for the Even Process with p = 0.3.

The Even Process’s ε-machine is shown in Figure 4. The calculation of entanglement
of formation is shown in Figure 5. For this example, it can be seen that EoF does not
satisfy any of the equalities satisfied by the Biased Coins. It is worth noticing, however
that hµ seems to have a similar functional form. Also, exploring this example right after
the Biased Coins Process might suggest that the changes seen in the graph are due to the
fact that this process is Markov Order infinity and cryptic order zero; unfortunately the
next example will show that the equalities are not satisfied in another process that has
both R and k equal to one.

Figure 5: Classical information quantities and EoF for the Even Process
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3.3 Golden Mean Process

Figure 6: ε-machine for the Golden Mean Process with p = 0.3.

The Golden Mean Process’s ε-machine is shown in Figure 6. Like the Biased Coins
Process, the Golden Mean has R = 1 and k = 1, yet it does not satisfy the same equalities
as the Biased Coins. We can see again that both EoF and hµ have a similar functional
form. It also seems reasonable to think that hµ might be an upper bound for EoF, and
this idea should be explored further.

Figure 7: Classical information quantities and EoF for the Golden Mean Process.

3.4 Further comments on the examples

Even though Figure 2 suggests there is a relationship between the EoF and one or several
of the classical information quantities of the process this is still not obvious and should not
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be taken lightly, since EoF is a quantum measurement. A couple of things are consistent
among the three examples: both hµ and EoF have similar functional forms, which makes
sense considering the function h(x) used to calculate the EoF has a similar form to the
formula for hµ of a unifilar process.

All the quantities in the graphs were obtained using CMPy functions and the QuTip
library for Python. In order further understand the EoF we also calculated it “by hand”
for the Biased Coins Process, and looked at the spin flipped density matrices ρ̃ for the
other two processes. A potentially interesting result is that only for the case of the Biased
Coins ρ = ρ̃, just as for a maximally entangled pure state the spin flipped state returns the
original state. This should be considered further to see if it has any direct implications in
the relationships of EoF shown in Figure 2.

4 Towards Interpretation

4.1 Entanglement of Formation as a measurement of Entanglement

The EoF as a measurement of entanglement has several advantages, two of which are
that it can be calculated analytically for certain mixed states and that it is equal to the
standard measurement of entanglement for the case of pure states, which is not true for all
measurements of entangled. It has also been studied more than other measurements since
it is relevant for quantum computational problems [5].

Despite all of this, there is still the problem of how to calculate it for bipartite systems
composed of Hilbert spaces of size greater than two. Another potential disadvantage men-
tioned in [4] is that one would expect dimensionless quantities such as E(ρ)/E(σ) to be
independent of the units chosen to define E. For example, we defined here the standard
unit as the singlet state, but in principle one can choose any entangled state. In general if
one chooses a state other than a Bell state as a unit to measure E, the mentioned ratio is
not the same as for when the Bell state is used.

One could disregard this problem by arguing that the Bell state is in a sense “special”,
or that choosing another mixed state as a unit of measurement is unnatural. This aren’t
strong enough arguments if one is truly determined to construct a robust measurement of
entanglement, specially because in bipartite systems by definition of EoF we are implicitly
assuming that all types of entanglement in this composite Hilbert space are the same and
one can go from one entangled state to other. The ratio problem should not be enough to
disqualify the EoF as a useful measurement, since it has a very clear interpretation and
has also proved to be useful several contexts, such as quantum error-correction.

As an exploratory approach the EoF is a good measurement to use, but it would
be interesting to eventually study the possibility of using some other measurements of
entanglement. Also, the problem of interpreting the EoF in the context of q-machines
remains open. Some remarks about that are explored in the next section.
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4.2 Entanglement of Formation of a q-Machine

In the physical interpretation of EoF one assumes that an LOCC process can be imple-
mented between the first and second qubit in order to transform from one entangled state
to another, yet this does not seems to be the case for the q-machine states. First of all, it
is not obvious who, what or how this local operations in the qubits would be performed.
Also, the example processes that we are studying so far are described by bipartite states
composed of two dimensional spaces, and even though both spaces behave mathematically
the same they are not semantically the same, which should probably not be taken lightly.

Another thing is that so far we have been using the initial state of the machine, which
is a mixed state, to calculate the EoF. Yet, if we consider the evolution of the process,
the q-machine has to be collapsed and then rebuilt at every step, and once the process
is in a known causal state, the new state of the q-machine is described by a pure state
(one of the |ηj〉), so calculating the entanglement reduces to the problem of calculating the
entanglement of a pure state. It would be interesting to look at how that entanglement
changes for the different possible states of the machine.

The interpretation of what an EoF tells us about a process remains to be understood,
let alone how to use it. Parallel to this, considering how to extend this calculation to higher
dimensional spaces is still unclear.

4.3 Discussion

Besides the considerations already mentioned, the quantum mechanical states that are used
in our description of stochastic processes have several constraints. Such constraints still
need to be explored in the context of the more general expressions that can be found in
the literature for EoF. This might not only bring some simplifications in the calculation
(and thus a potentially reasonable way to calculate EoF for processes with more than two
states), but also bring us closer to an interpretation of EoF that makes more sense as
applied to a q-machine.
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